

Key principles and objectives of MRV for NAMAs: Data and methodologies

David Rich World Resources Institute Mexico City 7 March 2014

Outline

- Introduction
- Methodology to estimate the effects of NAMAs
- Data and monitoring

MRV of NAMAs

- Several aspects of NAMAs can be subject to MRV, such as:
 - Implementation of NAMAs
 - GHG effects of NAMAs
 - Non-GHG effects of NAMAs (sustainable development benefits)
 - Financial, technological and capacity building needs and support received
- BURs require developing country Parties preparing NAMAs to submit the following information:
 - National circumstances and institutional arrangements related to the preparation of national communications
 - National inventories
 - Information on NAMAs and their effects, including methodologies, assumptions, and progress towards implementation
 - Finance, technology and capacity building needs and support received
 - Information related to domestic MRV

Types of NAMAs and available methods

Type of NAMA	Description/examples	Available methods
Projects	Individual mitigation projects	CDM methodologies GHG Protocol for Project Accounting Climate Action Reserve methodologies
Policies	Broader interventions such as laws, regulations and standards; taxes, charges, subsidies and incentives; information instruments; implementation of new technologies, processes, or practices; public or private sector financing and investment	GHG Protocol Policy and Action Standard
Goals	Economy-wide GHG reduction goals (base year goals, intensity goals, baseline scenario goals, fixed level goals)	GHG Protocol Mitigation Goals Standard

Greenhouse Gas Protocol standards relevant to NAMAs

• Policy and Action Standard

 How to estimate and report the GHG effects of policies and actions, including NAMAs

Mitigation Goals Standard

- How to track progress toward national, subnational, and sectoral mitigation goals
- GHG Protocol for Project Accounting
 - How to estimate GHG reductions from mitigation projects

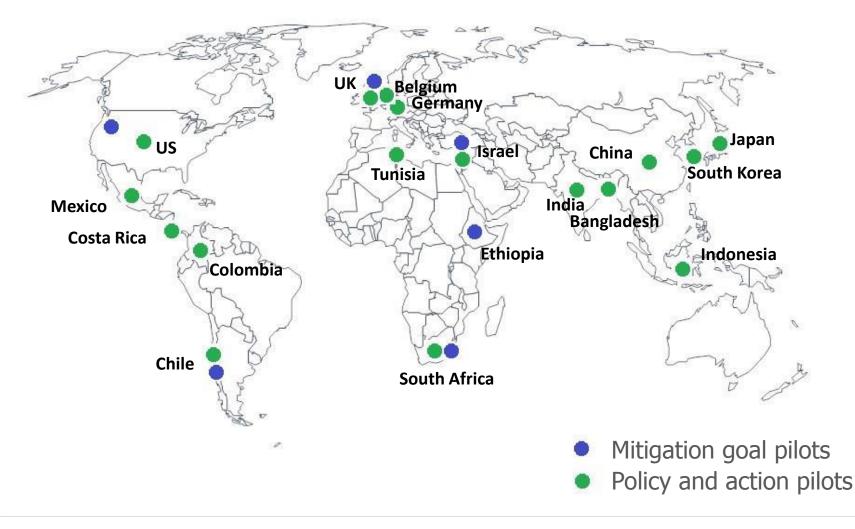
http://www.ghgprotocol.org/

Purpose of the Policy and Action Standard

- Guide users in answering the following questions:
 - <u>Before implementation</u>: What effect is a given policy or action likely to have on GHG emissions?
 - <u>During implementation</u>: How to track progress of a policy or action?
 - <u>After implementation</u>: What effect has a given policy or action had on GHG emissions?

Types of policies and actions

- Regulations and standards
- Taxes and charges
- Subsides and incentives
- Tradable permits
- Voluntary agreements
- Information instruments
- R&D policies
- Public procurement policies
- Infrastructure programs
- Implementation of new technologies, processes, or practices
- Financing and investment


Applicable sectors

- AFOLU
- Energy supply
- Industry
- Residential and commercial buildings
- Transport
- Waste

Pilot testing: 32 policies/goals in 20 countries/cities

Pilot tests for the *Policy and Action Standard* (1 of 2)

Description	
Sector-wide replacement of brick kiln technology	
Offshore wind promotion program	
Federal tax reduction for roof insulation	
New vehicle energy consumption and CO ₂ emissions targets	
Promotion of cogeneration in industry	
Financing of home thermal insulation	
Appliance program for minimum efficiency performance and labeling	
for light bulbs	
Energy efficiency communication and awareness program	
Beijing emissions trading system (ETS)	
Top 1000 enterprises program	
Transport costor air quality management plan	
Transport sector air quality management plan	
Coffee sector NAMA	
Renewable Energy Act (feed-in tariffs for renewable electricity	
generation)	

Pilot tests for the *Policy and Action Standard* (2 of 2)

Country	Description
Indonesia	REDD+ degraded land policy
Israel	Subsidy program for energy efficiency and GHG reductions
Japan, City of Tokyo	Tokyo Cap-and-Trade Program
Mexico	National light bulb replacement program (incandescent to CFL), part of the Special Program on Climate Change (PECC)
South Africa	Passenger mode shift from road to rail NAMA
South Africa	Energy efficiency implementation in the mining sector
South Africa, City of Cape Town	Smart Living Campaign to promote energy conservation
South Korea	1 Million Green Home (renewable energy) program
Tunisia	PROSOL Elec (solar PV policy), part of Tunisian Solar Plan NAMA
Tunisia	Tunisian Building NAMA
UK, City of London	RE:NEW home energy efficiency program
United States	Keystone XL Pipeline

Methodology to estimate the effects of NAMAs

Key concepts

- 1. Tracking performance indicators versus attributing changes in emissions to NAMAs
- 2. Key steps in estimating GHG effects of NAMAs
- 3. Baseline scenario and policy scenario
- 4. Ex-ante and ex-post assessment
- 5. GHG effects and non-GHG effects
- 6. Choosing the desired level of accuracy among a range of methodological options

Tracking performance indicators versus Attributing changes in emissions to specific NAMAs

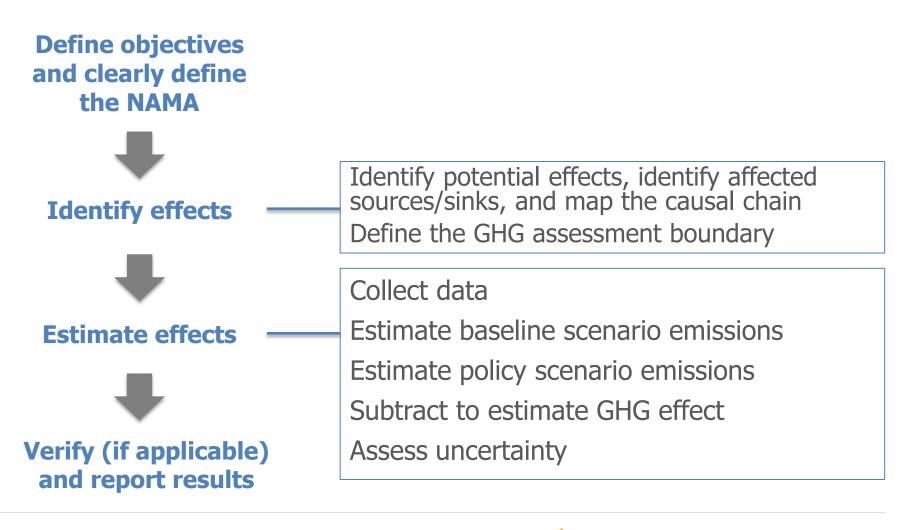
- Monitoring trends in performance indicators:
 - Useful to help understand whether a NAMA is on track
 - Does not explain why the changes in indicators are occurring or demonstrate the effectiveness of a NAMA
 - To meet certain objectives, may be sufficient
- Attributing changes in emissions to specific NAMAs:
 - More difficult since GHG emissions change for a variety of reasons
 - Requires estimating the effect of the NAMA versus the effects of other policies/actions and external factors (changes in GDP, energy prices, weather, etc.)
 - Enables users to meet additional objectives

Objectives of estimating the effects of NAMAs

Before NAMA implementation (ex-ante)

- **Inform NAMA selection** by comparing policy options based on their expected GHG effects
- **Inform and improve NAMA design** by understanding the GHG effects of policy design choices
- **Report** on expected future GHG effects of NAMAs being considered or implemented
- **Attract and facilitate financial support** for NAMAs by estimating potential GHG reductions

Objectives of estimating the effects of NAMAs


After NAMA implementation (ex-post)

- Evaluate NAMA effectiveness and understand whether implemented NAMAs are delivering intended results
- Learn from experience to identify and share best practices, improve NAMA design, and decide whether to continue current activities or implement additional policies
- Ensure NAMAs are cost-effective (e.g., GHG reduced per dollar) and that resources are invested efficiently
- **Assess contribution** of NAMAs toward GHG reduction goals
- **Report** on the GHG effects of NAMAs over time
- Meet funder requirements to estimate GHG reductions from NAMAs

Overview of steps to estimate the GHG effect of a NAMA

Baseline scenario and policy scenario

- **Baseline scenario:** a reference case that represents the events or conditions most likely to occur in the absence of the NAMA being assessed
- Policy scenario: the events or conditions most likely to occur in the presence of the NAMA being assessed
 - The policy scenario is the same as the baseline scenario except for the NAMA

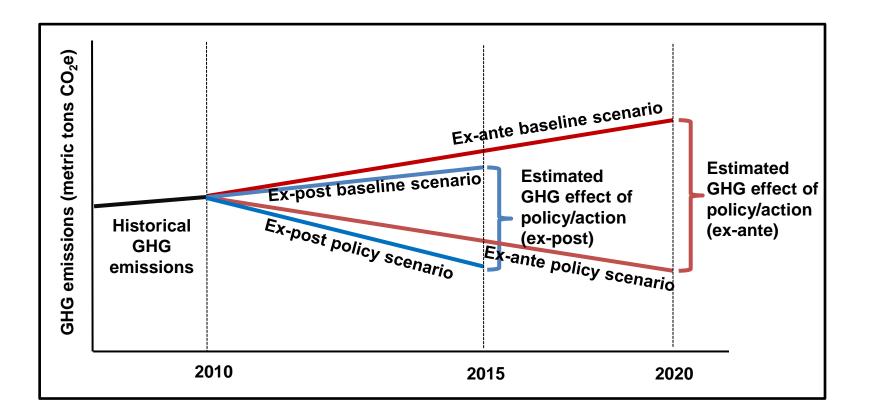
Estimating the GHG effect of a NAMA

Change in GHG emissions and removals resulting from the NAMA (t CO_2e) = Policy scenario emissions (t CO_2e) – Baseline scenario emissions (t CO_2e)

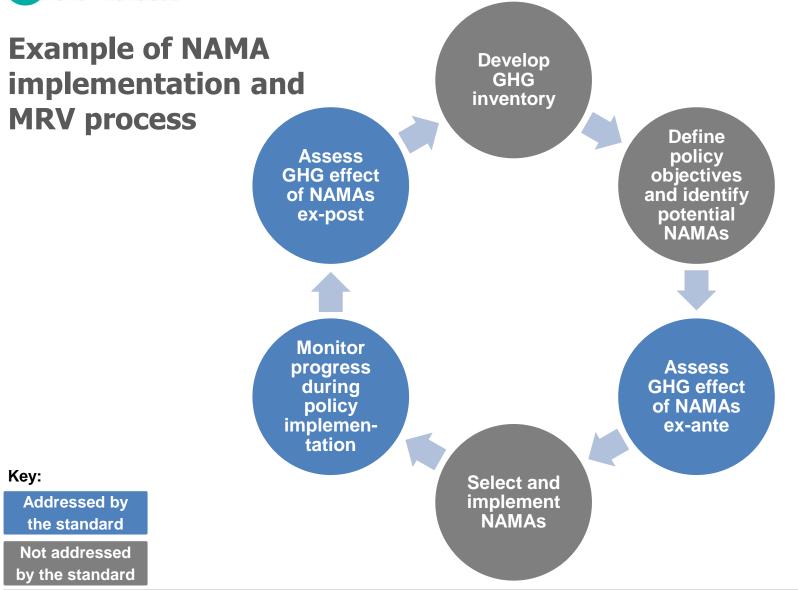
Example: Estimating the GHG effect

• Example: home insulation subsidy

GHG effect included	Affected GHG sources	Baseline emissions	Policy scenario emissions	Change (P – B)
Reduced emissions from electricity use				
Reduced emissions from home natural gas use				
Increased emissions from insulation production				


Ex-ante and ex-post assessment

- **Ex-ante assessment**: estimation of expected future GHG effects of a policy or action, usually before the policy or action is implemented
- **Ex-post assessment**: estimation of historical GHG effects of a policy or action, after the policy or action has been implemented



Ex-ante and ex-post assessment

Non-GHG effects (sustainable development benefits)

- <u>GHG effects</u>: changes in GHG emissions or removals that result from a NAMA
- <u>Non-GHG effects</u>: changes in other environmental, social, or economic conditions that result from a NAMA
 - E.g., air quality improvement, poverty reduction, health benefits, job creation, etc.

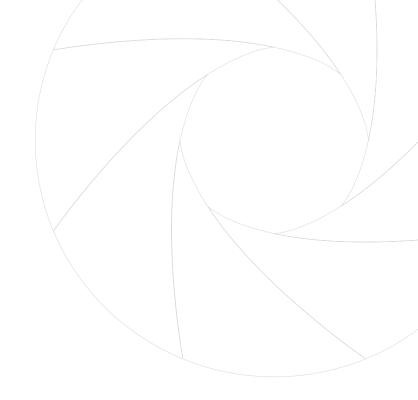
Non-GHG effects (sustainable development benefits)

- The same basic steps can be used to estimate non-GHG effects
 - Especially those linked to GHG emissions in terms of data (e.g., energy use, waste generation, local air pollution)
 - Example: promotion of public transit
 - To calculate GHG reductions: need to calculate fuel savings based on passengers switching from cars to public transit
 - The same data can be used to estimate energy savings, money saved from fuel savings, and reduced air pollution from fuel savings (e.g., PM, ozone, SO₂, NO_x)
- Additional methods/models and data sources will likely be necessary (e.g., economic models/data)

Range of methodological options

A range of methods are available to estimate the GHG effect of NAMAs

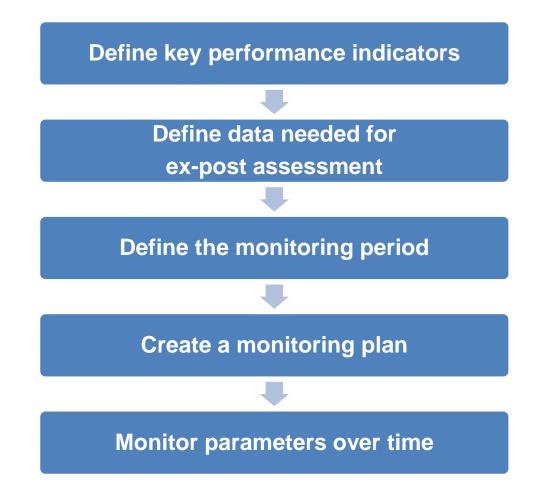
Level of accuracy/ completeness	GHG assessment boundary	Estimation methods	Data sources	
Lower	Less complete	Less accurate methods (e.g., simplified approaches)	International default data	
		More accurate	Source-specific or	
Higher	More complete	methods (e.g., complex approaches)	jurisdiction-specific data	



Choosing among a range of methodological options

- The appropriate level of accuracy and completeness depends on a range of factors:
 - Intended uses of the results, and the level of accuracy and completeness required to meet stated objectives
 - Funder/program requirements
 - Data availability
 - Capacity, resources, and time available to carry out the assessment
- Among the pilots, the NAMAs used more rigorous approaches

Data and monitoring


Monitoring

- Two related functions:
 - 1. Monitoring trends in key indicators to understand whether the policy or action is on track, being implemented as planned, and delivering the expected results
 - 2. Collect data needed to estimate GHG effects ex-post

Monitoring steps

Defining indicators

Indicator types	Definitions	Examples for a home insulation subsidy program
Inputs	Resources that go into implementing a policy or action	Money spent to implement the subsidy program
Activities	Activities that are involved in implementing the policy or action (undertaken by the authority or entity that implements the policy or action)	Number of energy audits carried out, total subsidies provided
Intermediate effects	Changes (e.g., in behavior, technology, processes, or practices) that result from the policy or action	Amount of insulation installed by consumers, fraction of homes that have insulation, amount of natural gas consumed in homes
GHG effects	Changes in GHG emissions and removals that result from the policy or action	CO ₂ emissions from home energy use
Non-GHG effects	Changes in relevant environmental, social, or economic conditions that result from the policy or action	Household disposable income from energy savings

Examples of data needs from NAMA MRV plans

Country and Sector	Examples of data to be monitored			
Mexico (Buildings)	 Electricity use (annual, direct metering) Emission factor from grid electricity Gross floor area of building units 			
South Africa (Energy supply)	 Capacity of CSP installed through program Electricity produced from funded CSP installations Capacity of wind power installed through program 			
Chile (Transport)	 Number of electric vehicles (quarterly) Passenger figures (monthly) Km traveled (monthly) 			
Tunisia (Energy supply)	 Power installed (MW) Solar panels produced each year Amount of exchanged refrigerators 			

Define the monitoring period

- Three relevant time periods:
 - NAMA implementation period
 - NAMA monitoring period
 - GHG assessment period

	Years						
Example	2005 –	2010 -	2015 -	2020 -	2025 -	2030 -	2035 -
	2009	2014	2019	2024	2029	2034	2039
NAMA							
implementation							
period							
NAMA monitoring							
period							
GHG assessment							
period (ex-ante)							

Create a monitoring plan

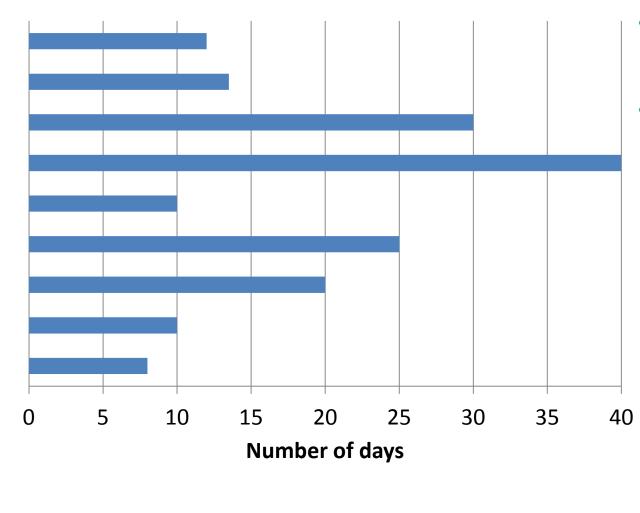
- The monitoring plan should describe:
 - Measurement or data collection methods and procedures
 - Sources of data
 - Monitoring frequency
 - The level of uncertainty in any measurements or estimates
 - Sampling procedures (if applicable)
 - Whether the data is verified, and if so, verification procedures
 - Entity or person responsible for monitoring and roles and responsibilities of relevant personnel
 - Methods for generating, storing, collating, and reporting data on monitored parameters
 - Databases and tools (e.g., software) to be used
 - Procedures for internal auditing, QA, and QC

Example of monitoring plan: Tunisia buildings NAMA

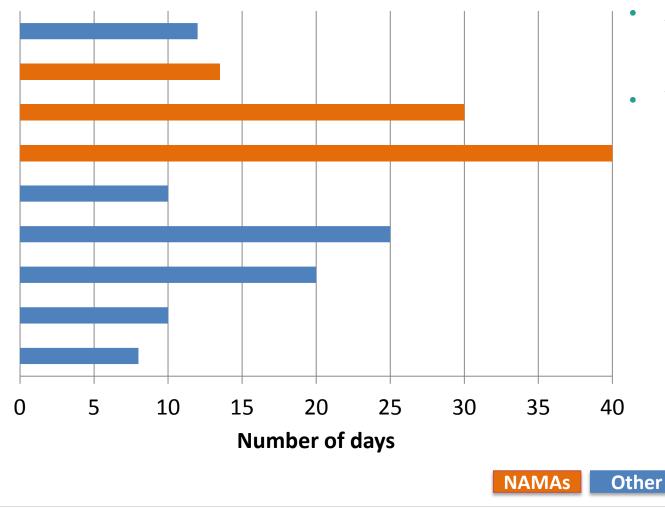
Indicator or parameter (and unit)	Data source	Monitoring frequency	Measured/ modelled/ calculated /estimated (and uncertainty)	Responsible entity	
Number of houses insulated and insulated area by type (roof, wall, glazing) and m ²	ANME information system (to be created)	Annual	Measured (Low uncertainty)	National Agency for Energy Conservation (ANME)	
For existing dwellings: historic annual electricity and primary thermal energy consumption (kWh/m ²)	Energy bills	Annual	Measured (Low uncertainty)	Collected by energy counsellors; fed into ANME information system	
For new dwellings: annual electricity and primary thermal energy consumption (kWh/m ²) of dwellings that do not apply to the program	Sampled metering on 50 new dwellings and survey to assess energy profile (BAU)	Annual verification	Measured for 50 dwellings and estimated for the rest (Medium uncertainty)	Collected by ANME control officers to build a BAU scenario for new dwellings	
Annual electricity and primary thermal energy consumption (kWh/year) per m ² and per dwellings	ANME information system	Every 5 years	TBD	ANME	

Example of monitoring plan: Tunisia buildings NAMA

Indicator or parameter (and unit)	Data source	Monitoring frequency	Measured/ modelled/ calculated/ estimated (and uncertainty)	Responsible entity
Job creation Number of employees in new and existing companies that provide energy services for buildings	ANME accreditation system and human resources department	Annual	Measured (Low uncertainty)	ANME
Creation of new companies Number of new companies created to provide energy services for buildings	ANME accreditation system and human resources department	Annual	Measured (Low uncertainty)	ANME
Saved energy costs Energy savings by source from GHG ex-post assessment x Energy prices for electricity, natural gas, LPG, kerosene, wood, charcoal	GHG ex-post assessment and ANME sources on energy prices and subsidies	Annual	Measured and calculated (Low uncertainty)	ANME


Data challenges highlighted during pilot testing

- Data availability was a limiting factor for some pilots
- Technical expertise required
- Capacity building may be necessary
- Challenging to apply methodology retrospectively, if appropriate data has not been collected
 - Best to put systems in place to collect data and apply the methodologies before the policy or action is implemented
- Once systems are in place, future assessments require less time and resources


Level of effort (Policy and Action Standard pilots)

- Average = 19 days (excluding outliers on either end)
- Varies depending on:
 - Whether data
 has already
 been collected
 - Whether any previous analysis has been done
 - Complexity of the policy/action
 - Level of accuracy and completeness required by the objectives

Level of effort (Policy and Action Standard pilots)

- Average = 19 days (excluding outliers on either end)
- Varies depending on:
 - Whether data
 has already
 been collected
 - Whether any previous analysis has been done
 - Complexity of the policy/action
 - Level of accuracy and completeness required by the objectives

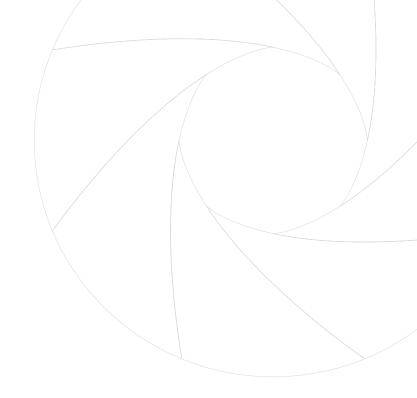
Frequency of NAMA estimation

- How often would you estimate the GHG effect of policies/actions using the Policy and Action Standard?
 - Developed countries
 - Annually as part of national policy reporting process
 - Every 5 years (research institute)
 - Developing countries
 - Annually
 - Every 2 years as part of BUR/NC reporting
 - Every 2 years or as needed
 - Once off, as needed
 - NAMAs
 - Annually
 - Once before policy implementation (ex-ante), annually during implementation, once after implementation (ex-post)

Thank you

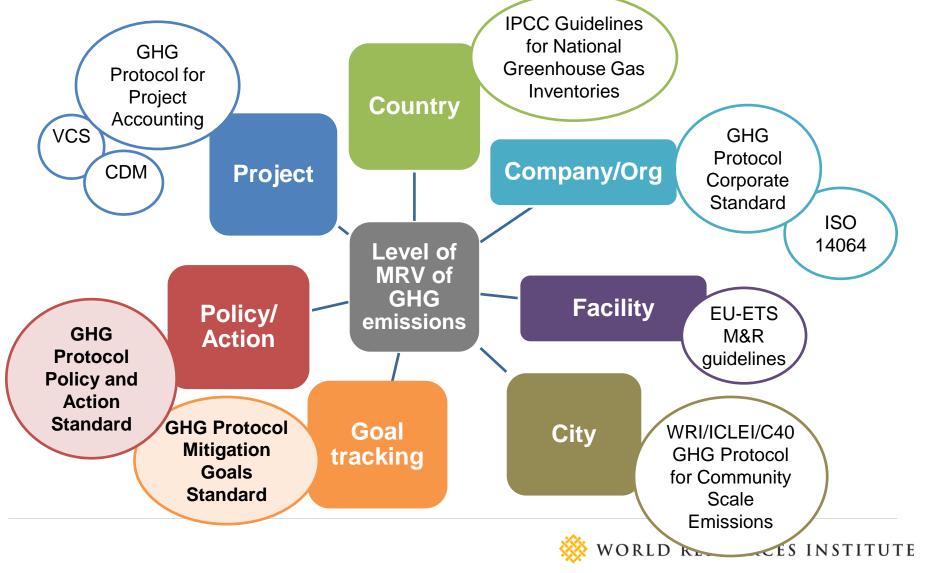
Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety


based on a decision of the Parliament of the Federal Republic of Germany

David Rich drich@wri.org

To download GHG Protocol standards and tools, visit: <u>www.ghgprotocol.org/mitigation-accounting</u>



Extra slides

Examples of existing standards/methodologies

Standard development process

Secretariat (WRI)

Advisory Committee (30)

Technical Working Groups (100+)

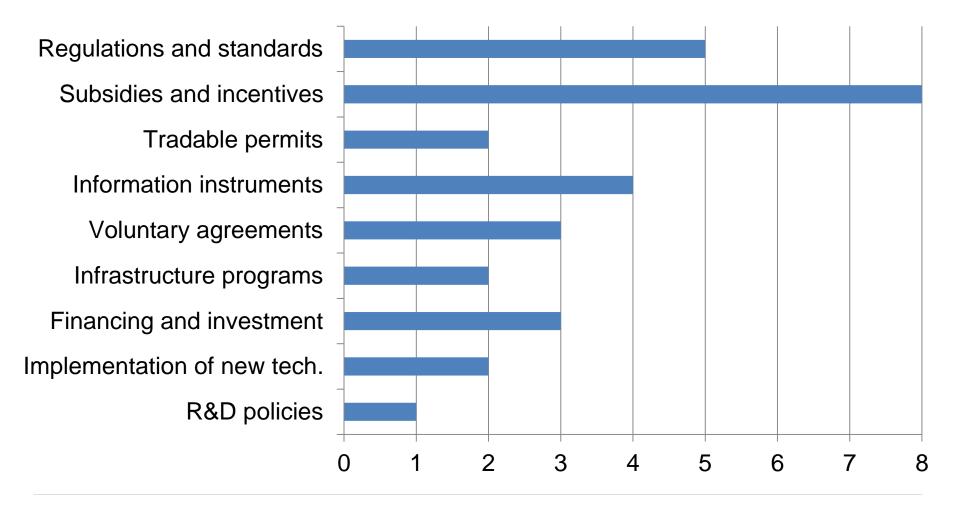
Review Group (150+)

Pilot Testers (20+)

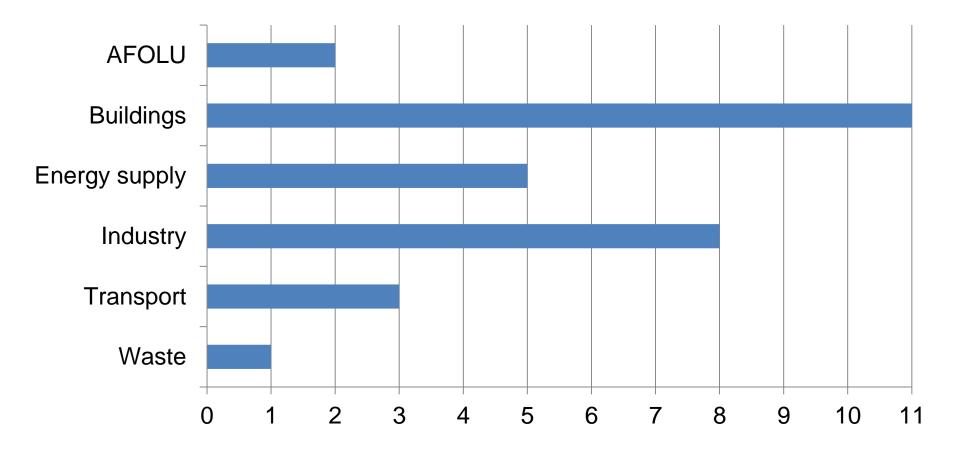
Standard development process

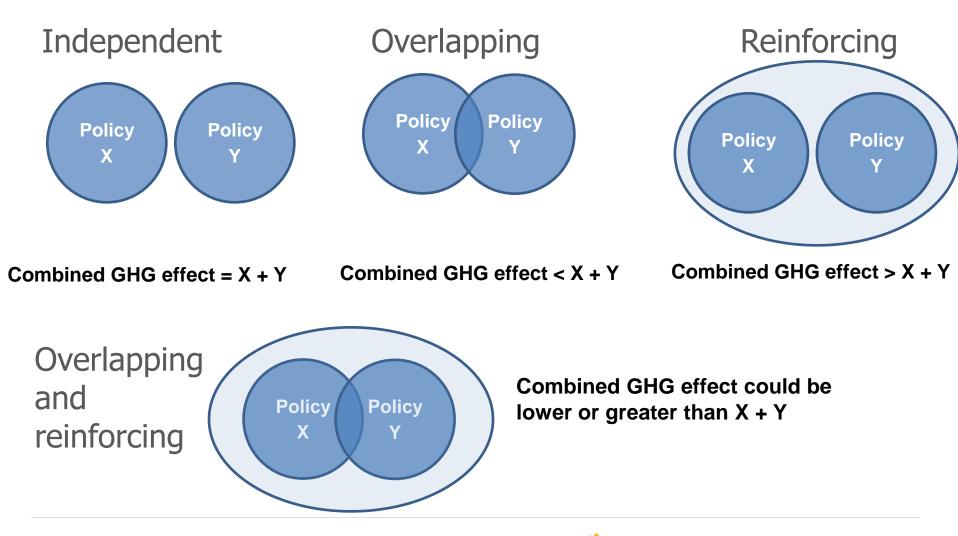
Activities	2012				2013				2014			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Convene stakeholder groups												
Develop first drafts												
Workshops (Doha, Washington, Beijing) and review period												
Develop second drafts												
Pilot test standards												
Develop third drafts												
Public comment period												
Publish standards												

Advisory Committee members


- Asian Development Bank
- Australia, Department of Climate Change and Energy Efficiency
- Brazil, Ministry of Environment
- California Air Resources Board
- CCAP
- Chile, Ministry of Environment
- China, NDRC
- Colombia, Ministry of Environment and
 Sustainable Development
- Costa Rican Institute of Electricity
- Ecofys
- Ethiopia, EPA
- European Commission
- Godrej & Boyce Mfg Co. Ltd., India
- India, BEE (TBC)
- Japan, Ministry of Environment
- Johnson Controls

- Maersk Group
- New York City, Mayor's Office
- OECD
- Siemens
- South Africa, Department of Environmental Affairs
- State of Rio de Janeiro
- Stockholm Environment Institute US
- Thailand Greenhouse Gas Management
 Organization
- Tsinghua University
- UK DECC
- United Nations Climate Change Secretariat
- UNDP
- US EPA
- WBCSD
- World Bank


Types of policies and actions piloted



Sectors piloted (Policy and Action Standard)

Policy interactions (and avoiding double counting of reductions)

