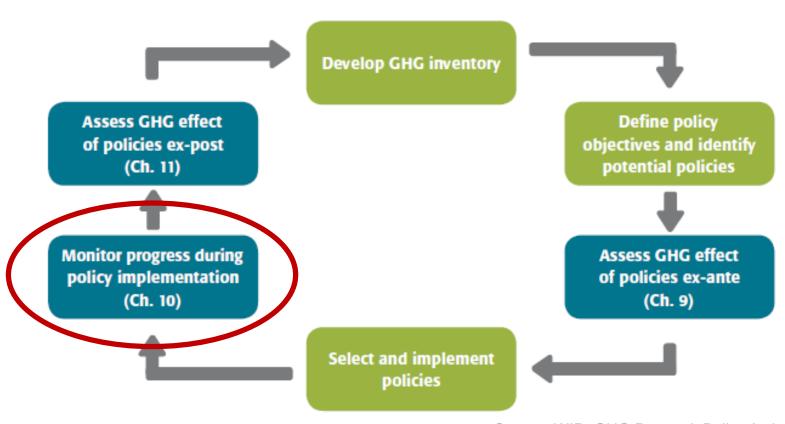


Tracking of mitigation actions in the agriculture sector

Anke Herold, Öko-Institut (Berlin)

Webinar, 27.7.2017

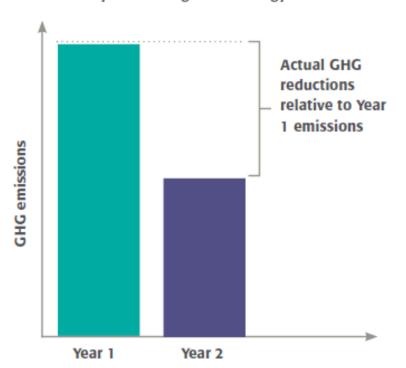
Content


- Scope of 'tracking'
- 2 Challenges in the monitoring and tracking of mitigation actions in the agriculture sector
- 3 Accounting principles
- 4 Planning steps for the tracking of mitigation actions
- 5 Key areas for future improvements

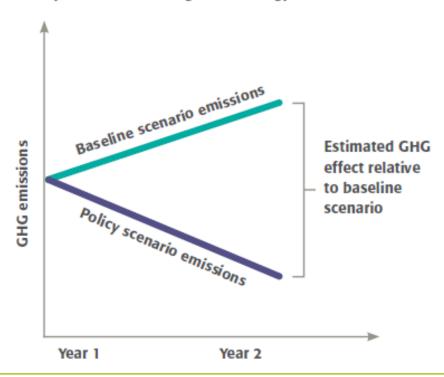
Scope of 'tracking'

Tracking at different points in time

Assessing of GHG emission impacts of mitigation actions throughout policy development and implementation process


Source: WIR, GHG Protocol, Policy Action Standard

Tracking methods


GHG inventory accounting

Mitigation action accounting

Inventory accounting methodology

Policy/action accounting methodology

Focus of presentation: GHG inventory accounting

WHY?

- Most essential step of accounting for many types of NDCs under Paris Agreement
- Necessary to track overall progress with countries' emissions
- Comprehensive accounting of all impacts on GHG emissions
- Impacts of mitigation actions not 'visible' at country level if not reflected in GHG inventory

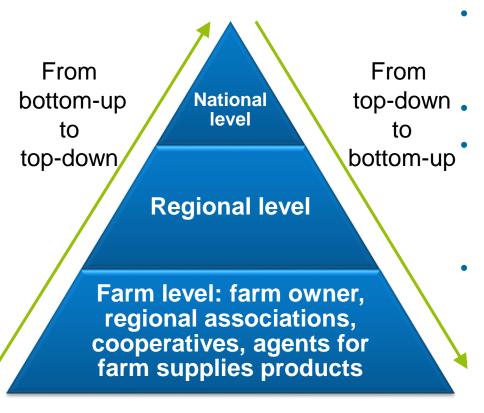
BUT:

- Does not attribute changes of emissions to specific mitigation actions
- Does not explain why emissions change over time

Challenges in the monitoring and tracking of mitigation actions in the agriculture sector

Challenges: Tracking emissions

Monitoring and tracking of emissions in agriculture sector


- Many individual animals and farmers with individual practices and behaviour
- Biological processes influenced by many different factors (climate, humidity, nutrient availability, microorganisms...)
- Strong intra-annual and inter-annual variability
- Impacts of mitigation actions on emissions sometimes not always fully understood
- High uncertainties
- Simple tier 1 methods of IPCC guidelines do not track impacts of mitigation actions, higher tier methods are often data intensive and require models, disaggregated data not always available
- On-site measurements of impacts of mitigation actions often complex and expensive (e.g. repetition in several years necessary)

Challenges: Tracking actions

Mitigation actions

- Complex clusters and categories of mitigation actions which include several individual mitigation practices and mitigation elements,
 - E.g. NAMA Café, sustainable grazing, climate-smart agriculture, agroforestry
- Not simple to identify exact GHG impacts of mitigation actions
 - Mitigation actions do not cover the entire area of a country and are only implemented in specific geographic locations:
 - In one region / by some farmers / in certain types of farms
 - Mitigation actions may have limited time periods
 - Promotion/ funding for certain activities stops or changes
 - Farmers may decide to no longer participate
- Reversibility of effects of some mitigation actions (no tillage, feeding of animals) and difficult to control implementation of practices by farmers

Challenges: ensure consistency across different administrative levels in a country

- Planning and design of mitigation often happens from top-down to bottom-up
- Implementation at local level
- Definition and implementation of monitoring and accounting has to happen in both directions and a common design process is necessary
- Define information and data flows between the mitigation actions and the GHG inventories

Objective: ensure a coherent implementation of the methods and accounting approaches in both directions across the different levels in a country (national, regional, local or farm level)

Accounting principles

Inventory and accounting principles under Paris Agreement

Principles - transparency

Transparency

- Means that data sources, assumptions and methods used for the calculation of emissions should be explained.
- Report should allow the replication of the calculations
- Present activity data, emission factors and other parameters separately
- Particular challenge in agriculture sector if models are used for higher tier methods ⇒ specific IPCC guidance for model description available

Principles - consistency

Consistency

- Temporal: consistent methods across different years/ time series of emissions
- Reference: use consistent methods between reference level and implementation
- Geographical: use same methods and parameters at different levels of the country (national, regional, subregional, local)
- Definitions: use the same definitions for the same type of activities (e.g. forest definition, degradation, animal waste management systems)

Principles – avoid double counting

Avoid double counting

- Different projects and programmes with mitigation actions in the agriculture sector can lead to overlap of areas of the same mitigation actions in the same time period
 - Acceptance and registration of projects and programmes necessary to avoid overlap
- Avoid overlap between accounting of REDD+ and forest related activities and agriculture activities
 - Farmers may allocate reforestation on agricultural lands as agriculture mitigation activity
 - Avoid allocation of the same mitigation activities to two inventory categories, base allocation on IPCC guidance

Planning steps for the tracking of mitigation actions

Planning steps

1

 Clarification and description of mitigation actions with regard to all relevant aspects and elements

2

Integration of appropriate methods in the GHG inventory

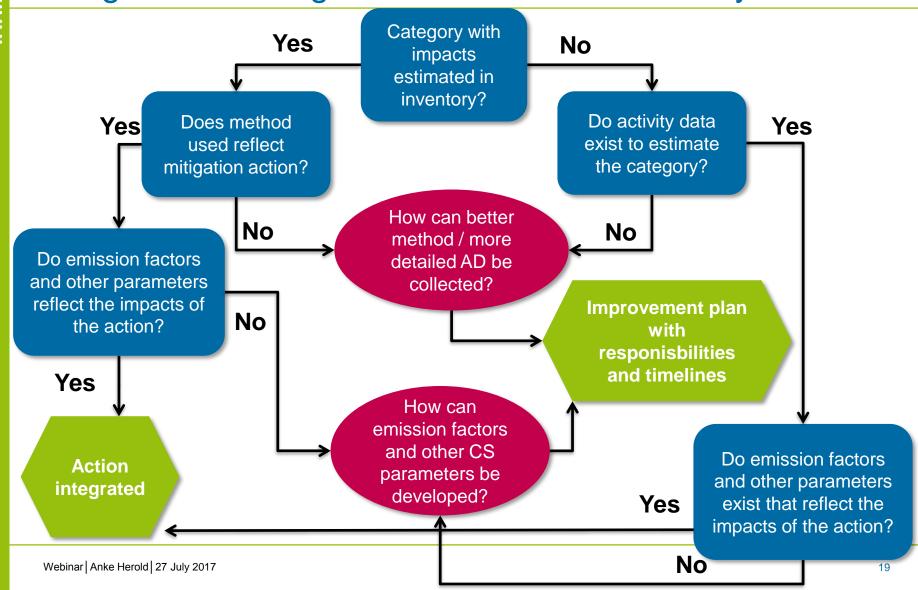
3

 Integration of activities in a domestic monitoring system

4

Implementation and tracking

Description of mitigation actions


Description

- Objectives
- Elements of the action
- How does it impact the emissions reductions?
- Responsibilities
- Source of financial support

Impacts on GHG inventory

- Which sources, sinks, gases, C stocks does the action influence?
- Which categories of the inventory are influenced?
- Which method is used in the inventory?
- Is it necessary to improve ⇒ improvement plan
- Are data for improvement available?

Integration of mitigation action in the inventory

Key areas for future improvements (based o project experiences)

Key areas for future improvements

Missing estimates for C stock changes in soil C pools in many developing countries in GHG inventories

- Mitigation actions that improve soil quality (organic fertilizers, improved grazing management, cover crops, additions of crop residues to soils) will not be reflected in the inventory
- Support & resources necessary for estimation of C stocks in soils in developing countries
- Additional research required

Missing estimates for C stocks in perennial vegetation (e.g. for agroforestry systems, silvipastoral systems)

- Move to agroforestry systems will not be seen as impacts in GHG inventories
- Change to silvipastoral systems or more trees on pasture will not be reflected as impacts in GHG inventories

Key areas for future improvements

N₂O emissions from agriculture soils

- Data on average fertilizer consumption related to specific crop types missing, without such baseline data difficult to determine potential emission reductions due to improved fertilization
- Data on application of organic N fertilizers often missing, changes in organic fertilizer use not reflected

Enteric fermentation CH₄

- Tier 2 and CS emission factors already used by many countries if this is a significant source, improved livestock characterization for higher tiers often implemented
- Improved feeding situation difficult to monitor when grazing is dominant management system
- Several parameters for estimation difficult to measure, e.g. food digestibility
- More country-specific research in developing countries needed

Key areas for future improvements

Manure management: N₂O and CH₄

- CH₄ from storage and treatment of manure and from manure deposited on pasture
- More relevant when large number of animals are managed in confined areas, intensive dairy, beef, swine, poultry farms
- In developing countries for cattle less relevant due to importance of pasture
- Mitigation actions such as installation of anaerobic digesters provide relevant data for estimation.

Conclusions

- Agriculture sector is often dominant in GHG inventories of developing countries
- Mitigation actions focus on this sector
- Inventories of developing countries lack higher tier methods and related data to reflect these mitigation actions appropriately
- Additional research related to specific practices and circumstances in developing countries needed to develop country-specific parameters in agriculture
- New approaches for data collection from farmers needed
- Additional support required for developing countries related to the development and implementation of higher tier methods in agriculture

Many thanks for your attention!

Any questions?

Anke Herold
Research Coordinator international Climate Policy
Öko-Institut, Berlin
a.herold@oeko.de

